# Subject Code: R13202/R13 <br> I B.Tech II Semester Supplementary Examinations Dec./Jan. - 2015/2016 MATHEMATICS-III <br> (Common to All Branches) <br> Time: 3 hours <br> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B 

Set No - 1

Max. Marks: 70

## PART-A

1. (a) Find the Rank of the matrix $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$ using Echelon form
(b) Prove that the matrix $A$ and $A^{T}$ have same Eigen values
(c) Find the volume of loop of the curve $2 a y^{2}=x(x-a)^{2}$ revolves about x -axis
(d) Evaluate $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$
(e) Prove that $\operatorname{div}(r \times a)=0$ where a is a constant vector
(f) Evaluate $\int f . d r$ where $f=(2 y+3) i+x z j+(y z-x) k$ along the straight line joining $(0,0,0)$ and $(2,1,1)$

## PART-B

2. (a) Test for consistency and solve $5 x+3 y+7 z=4,3 x+26 y+2 z=9,7 x+2 y+10 z=5$.
(b) Solve the equations
$x y+z-w=2,7 x+y+3 z+w=12,8 x-y+z-3 w=5,10 x+5 y+3 z+$
$2 w=20$. by Gauss-Jordan method
3. (a) Verify Cayley Hamilton theorem for $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$, hence compute $A^{4}$ and $A^{-1}$
(b) Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ in to canonical form by orthogonal reduction hence find rank, index and signature .
4. (a) Trace the curve $x=a \cos ^{3} \theta, y=b \sin ^{3} \theta$
(b) Evaluate the $\int_{0}^{a} \int_{x / a}^{\sqrt{x / a}}\left(x^{2}+y^{2}\right) d x d y$ by change of order of integration

## Page 1 of 2

## Subject Code: R13202/R13

5. (a) Prove that $\nabla \cdot(\bar{f} \times \bar{g})=\bar{g} \cdot(\nabla \times \bar{f})-\bar{f} \cdot(\nabla \times \bar{g})$
(b) Find the angle between the surfaces $x^{2}+y^{2}-z^{2}=12 \& x^{2}+y^{2}-z=5$ at $(2,2,1)$
6. (a) Evaluate $\iint_{s} x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y$ over the surface bounded by the planes $\mathrm{z}=0, \mathrm{z}=\mathrm{b}$ and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$.
(b) Evaluate $\iiint_{v} 45 x^{2} y d x d y d z$ and v is the region bounded by $\mathrm{x}=\mathrm{y}=\mathrm{z}=0$ and $4 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=8$
7. (a) Evaluate $\int_{0}^{\infty} 3^{-4 x^{2}} d x$
(b) Prove that $\Gamma(n) \Gamma(1-n)=\pi / \sin n \pi$
