Subject Code: R13202/R13

Set No - 1

I B.Tech II Semester Supplementary Examinations Dec./Jan. – 2015/2016 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

4.4.4.4.

PART-A

- 1. (a) Find the Rank of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ using Echelon form
 - (b) Prove that the matrix A and A^T have same Eigen values
 - (c) Find the volume of loop of the curve $2ay^2 = x(x-a)^2$ revolves about x-axis
 - (d) Evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$
 - (e) Prove that $div(r \times a) = 0$ where a is a constant vector
 - (f) Evaluate $\int f \, dr$ where f = (2y + 3)i + xzj + (yz x)k along the straight line joining (0,0,0) and (2,1,1)

[3+3+4+4+4+4]

PART-B

- 2. (a) Test for consistency and solve 5x + 3y + 7z = 4.3x + 26y + 2z = 9.7x + 2y + 10z = 5.
 - (b) Solve the equations

$$xy + z - w = 2.7x + y + 3z + w = 12.8x - y + z - 3w = 5.10x + 5y + 3z + 2w = 20$$
. by Gauss-Jordan method

[8+8]

- 3. (a) Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$, hence compute A^4 and A^{-1}
 - (b) Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ in to canonical form by orthogonal reduction hence find rank, index and signature.

[8+8]

- 4. (a) Trace the curve $x = a \cos^3 \theta$, $y = b \sin^3 \theta$
 - (b) Evaluate the $\int_0^a \int_{x/a}^{\sqrt{x/a}} (x^2 + y^2) dx dy$ by change of order of integration [8+8]

Page 1 of 2

Subject Code: R13202/R13

Set No - 1

- 5. (a) Prove that $\nabla \cdot (\overline{f} \times \overline{g}) = \overline{g} \cdot (\nabla \times \overline{f}) \overline{f} \cdot (\nabla \times \overline{g})$
 - (b) Find the angle between the surfaces $x^2 + y^2 z^2 = 12 & x^2 + y^2 z = 5$ at (2, 2, 1)

[8+8]

- 6. (a) Evaluate $\iint_s x^3 dy dz + x^2 y dz dx + x^2 z dx dy$ over the surface bounded by the planes z = 0, z = b and the cylinder $x^2 + y^2 = a^2$.
 - (b) Evaluate $\iiint_{y} 45x^{2}y dx dy dz$ and v is the region bounded by x = y = z = 0 and 4x + 2y + z = 8

[8+8]

- 7. (a) Evaluate $\int_{0}^{\infty} 3^{-4x^2} dx$
 - (b) Prove that $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$

[8+8]

Page 2 of 2